Mathematical Analysis 2
 Midterm 1

1. Solve the differential equation:

$$
x y^{2}=y^{\prime} e^{-x}-x .
$$

SOLUTION: This equation is separable.

$$
\begin{aligned}
& x e^{x} y^{2}=y^{\prime}-x e^{x} \Longrightarrow y^{\prime}=x e^{x}\left(1+y^{2}\right) \Longrightarrow \\
& \frac{1}{1+y^{2}} d y=x e^{x} d x \Longrightarrow \int \frac{1}{1+y^{2}} d y=\int x e^{x} d x \Longrightarrow \\
& \arctan y=(x-1) e^{x}+C \Longrightarrow y=\tan \left((x-1) e^{x}+C\right) .
\end{aligned}
$$

2. Solve the initial value problem:

$$
x y^{\prime}=y+\frac{x}{\cos \frac{y}{x}}, \quad y(1)=\frac{\pi}{4} .
$$

SOLUTION: This equation can be written as $y^{\prime}=\frac{y}{x}+\frac{1}{\cos \frac{y}{x}}$, so it is homogeneous, and requires the substitution $y=x v, y^{\prime}=x v^{\prime}+v$. Thus we get

$$
\begin{gathered}
x v^{\prime}+\psi=\psi+\frac{1}{\cos v} \Longrightarrow \cos v d v=\frac{d x}{x} \Longrightarrow \int \cos v d v=\int \frac{d x}{x} \Longrightarrow \\
\sin v=\ln |x|+C \Longrightarrow v=\arcsin (\ln |x|+C) \Longrightarrow y=x \arcsin (\ln |x|+C) .
\end{gathered}
$$

Now we plug in $x=1$ and get

$$
y(1)=\frac{\pi}{4}=\arcsin C \Longrightarrow C=\sin \left(\frac{\pi}{4}\right) \Longrightarrow C=\frac{\sqrt{2}}{2} .
$$

Remark: The solution is valid only for x 's larger than 0 and such that $\ln x+\frac{\sqrt{2}}{2} \in[-1,1]$, i.e., for $x \in\left[e^{-1-\frac{\sqrt{2}}{2}}, e^{1-\frac{\sqrt{2}}{2}}\right]$.
3. Solve the initial value problem:

$$
y^{\prime}=\frac{5}{4} x-y-\left(\frac{5}{4} x-y\right)^{2}, \quad y(0)=\frac{1}{2} .
$$

SOLUTION: This equation requires the linear substitution $u=\frac{5}{4} x-y$, which yields $y^{\prime}=\frac{5}{4}-u^{\prime}$. Then we obtain:

$$
\begin{gathered}
\frac{5}{4}-u^{\prime}=u-u^{2} \Longrightarrow u^{\prime}=u^{2}-u+\frac{5}{4} \Longrightarrow \frac{d u}{u^{2}-u+\frac{5}{4}}=d x \Longrightarrow \\
\int \frac{d u}{u^{2}-u+\frac{5}{4}}=\int d x \Longrightarrow \int \frac{d u}{\left(u-\frac{1}{2}\right)^{2}+1}=x+C \Longrightarrow \\
\arctan \left(u-\frac{1}{2}\right)=x+C \Longrightarrow u=\tan (x+C)+\frac{1}{2} \Longrightarrow y=\frac{5}{4} x-\tan (x+C)-\frac{1}{2}
\end{gathered}
$$

Now we plug in $x=0$ and get

$$
y(0)=\frac{1}{2}=-\tan (C)-\frac{1}{2} \Longrightarrow \tan (C)=-1 \Longrightarrow C=-\frac{\pi}{4} .
$$

4. Solve the differential equation:

$$
y^{\prime}=\frac{y}{x}+\frac{x^{2}}{x^{2}+2} .
$$

SOLUTION: This is a nonhomogeneous linear equation. We start by solving the homogeneous equation $y^{\prime}=\frac{y}{x}$, i.e., $\frac{d y}{y}=\frac{d x}{x}$, which solves to $\ln |y|=\ln |x|+C$. Applying the exponential function we get $y=x C$, where the new C is the old $\pm e^{C}$. To solve the nonhomogeneous equation we apply variation of the constant, i.e., we replace the constant C by a function $c(x)$. This leads us to $y=x c(x)$ and $y^{\prime}=x c^{\prime}(x)+c(x)$ (we will write just $y^{\prime}=x c^{\prime}+c$). Plugging this into the original equation, we get

$$
\begin{gathered}
x c^{\prime}+\phi=\phi+\frac{x^{2}}{x^{2}+2} \Longrightarrow d c=\frac{x^{2}}{x\left(x^{2}+2\right)} d x \Longrightarrow \int d c=\int \frac{x}{x^{2}+2} d x \Longrightarrow \\
c=\frac{1}{2} \int \frac{2 x}{x^{2}+2} d x \Longrightarrow c=\frac{1}{2} \ln \left(x^{2}+2\right)+C \Longrightarrow y=x\left(\frac{1}{2} \ln \left(x^{2}+2\right)+C\right) .
\end{gathered}
$$

